Candidate Name	Centre Number				Candidate Number					
						0			·	

GCSE

SCIENCE (Double Award)

UNIT 2: (Double Award) CHEMISTRY 1 HIGHER TIER

SAMPLE ASSESSMENT MATERIALS

(1 hour 15 minutes)

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	6	
3.	7	
4.	6	
5.	5	
6.	6	
7.	10	
8.	11	
Total	60	

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. Question **8(a)** is a quality of extended response (QER) question where your writing skills will be assessed.

Answer all questions.

1. (a) (i) Complete the following table that shows information about the atom of potassium. [2]

Element	Symbol	Number of protons	Number of neutrons	Number of electrons
potassium	39 K 19			

(ii)	Use th	ne Periodic Table of Elements to give the element	
	I.	in Group 2 and Period 2	[1]
	II.	which has electronic structure 2,8,6.	[1]

(iii) The diagram below shows the electronic structure of an element in the Periodic Table.

Using **X** to represent an electron, draw a similar style diagram to show the electronic structure of the element which lies directly **above** this one in the Periodic Table. [1]

(b)	(i)	The chemical formula of aluminium nitrate is $Al(NO_3)_3$. Give the number of nitrogen atoms in the formula $Al(NO_3)_3$.	[1]
	(ii)	Give the chemical formula of potassium carbonate.	[1]

(c)	Boron has two isotopes, ${}^{11}_{5}B$ and ${}^{10}_{5}B$.	
	In terms of particles, give one similarity and one difference between the nuclei of these two boron atoms.	[2]
	Similarity	
	Difference	

2. The graphs below show the solubilities of sodium chloride and copper(II) sulfate in water at different temperatures.

GCSE SCIENCE (Double Award) Sample Assessment Materials 89

(a)	as temperature increases. [3]
/b)	Coloulate the mass of colid company(II) sulfate that forms when a setumated
(b)	Calculate the mass of solid copper(II) sulfate that forms when a saturated solution in 50 g of water at 80 °C cools to 40 °C. [2]
	Mass = g
(c)	State why the temperature scale on solubility graphs generally ranges from 0 °C to 100 °C. [1]

3. (a) A small piece of sodium is added to water.

(i)		า 1]
(ii)	Complete and balance the symbol equation for the reaction between sodium and water.	2]
	2Na + 2H₂O → +	

(b)	The ed	quation below shows the reaction between sodium and oxygen.
		4Na + O₂
	0.46 g	of sodium was burned in excess oxygen.
		$A_{\rm r}({\rm O}) = 16$ $A_{\rm r}({\rm Na}) = 23$
	(i)	Calculate the number of moles in 0.46 g of sodium. [1]
		Mala a of a adiama
		Moles of sodium =
	(ii)	Use the given symbol equation and your answer to part (i) to find the number of moles of sodium oxide formed from 0.46 g of sodium. [1]
	(iii)	Use your answer from part (ii) to calculate the mass of sodium oxide formed. [2]
		Mass of sodium oxide g
		Mass of social s
		-

4. Graph **A** below, shows the volume of hydrogen formed during the reaction between 0.06g of magnesium ribbon and **excess** dilute hydrochloric acid at 20 °C.

(a)	State which of graphs B , C , D and E represents the reaction using 0.06 g of magnesium ribbon and excess hydrochloric acid at 40 °C . Explain your choice.	of [4]
	Graph	
	Explanation	

(b)	State which of graphs B , C , D and E represents the reaction using 0.12 g c magnesium ribbon and excess hydrochloric acid at 20 °C. Explain your choice.	of [2]
	Graph	
	Explanation	

6

5.

They were told that one was temporary hard water, one was permanent hard water and one distilled water, but they were not told which was which.
\$ Describe an investigation you would carry out using soap solution to identify each sample. [5]

A group of students were given three water samples labelled ${\bf A},\,{\bf B}$ and ${\bf C}.$

6. (a) During the last 250 years the level of carbon dioxide in the atmosphere has slowly increased. See Table 1.

Most scientists believe the increase in the concentration of carbon dioxide in the atmosphere has resulted in global warming.

	Year					
	1750	1800	1850	1900	1950	2000
Concentration of carbon dioxide in the atmosphere (% by volume)	0.0278	0.0282	0.0288	0.0297	0.0310	0.0368
Average global temperature (°C)	13.3	13.4	13.4	13.6	13.8	14.4

Table 1

However, some scientists believe that changes in solar activity i.e. changes in the brightness and warmth of the sun, is the cause of global warming. Graph 1 shows the changes in solar activity and atmospheric temperatures since 1880.

	(I) 	using the information in Graph 1 discuss whether the evidence supports the argument that solar activity is the cause of global warming.	[2]
	(ii)	Use the data in Table 1 to show that the rate of increase of carbon dioxide levels in the atmosphere is rising.	[2]
(b)	In Anta	arctica, scientists have drilled down two miles below the surface and it up samples of ice which are hundreds of thousands of years old. samples are called ice cores and contain trapped air bubbles.	
		be how these ice cores can be used in the study of global warming.	

7. Four groups of students carried out an investigation to find the chemical formula of an oxide of copper. Each group was given a different known mass of the oxide. Each group carried out the same procedure.

Natural gas was passed over the heated oxide using the apparatus below.

The reaction tube and oxide was weighed before heating and again at 5 minute intervals until the mass remained constant.

Their results are shown below.

Group	Mass of oxide used (g)	Mass of copper formed (g)	Mass of oxygen removed (g)
1	0.50	0.39	0.11
2	1.00	0.81	0.20
3	1.50	1.20	0.30
4	2.00	1.63	0.37

(a) On the grid plot the mass of copper formed against the mass of oxygen removed. Draw a suitable line starting at the origin (0,0).

(b) (i) Use your graph to predict the mass of oxygen removed to form 1.00 g of copper. [1]

Mass of oxygen = g

(ii) Using the masses of copper and oxygen from part (i), calculate the simplest formula of the oxide of copper. [2]

$$A_{\rm r}({\rm O}) = 16$$
 $A_{\rm r}({\rm Cu}) = 63.5$

Simplest formula

GCSE SCIENCE (Double Award) Sample Assessment Materials 99

()	obtain accurate results.	[4

10

8. (a) Group 1 metals react with Group 7 non-metals to form halide con	pounds.
--	---------

Group 1	Group 7
lithium	fluorine
sodium	chlorine
potassium	bromine

	elements, from the tables above, would react together the most viole	ently. [6 QER]
•••••		

(b)	Silver nitrate solution can be used to detect the presence of aqueous halide
	ions.

(i)	Give the observations made when silver nitrate solution is added in	
	turn to solutions containing chloride ions, bromide ions and iodide	
	ions.	[2]

lon	Observation
chloride	
bromide	
iodide	

(ii)	When silver nitrate solution is added to calcium chloride solution a
	white precipitate is formed.

Write the balanced symbol equation for this reaction.				
+			. +	

11

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH-
Hydrogen	H⁺	lodide	I ⁻
Iron(II)	Fe ²⁺	Nitrate	NO ₃ -
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li⁺	Sulfate	SO₄²-
Magnesium	Mg ²⁺		•
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag⁺		
Sodium	Na [⁺]		
Zinc	Zn ²⁺		

Avogadro's number, $L = 6 \times 10^{23}$

PERIODIC TABLE OF ELEMENTS

חו	1
rı	VI.